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Abstract

Various static and dynamic aspects of post-buckled thin plates, including the transition of buckled patterns, post-
buckling dynamics, secondary bifurcation, and dynamic snapping (mode jumping phenomenon), are investigated sys-
tematically using asymptotical and non-stationary finite element methods. In part I, the secondary dynamic instability
and the local post-secondary buckling behavior of thin rectangular plates under generalized (mechanical and thermal)
loading is investigated using an asymptotic numerical method which combines Koiter�s nonlinear instability theory with
the finite element technique. A dynamic multi-mode reduction method—similar to its static single-mode counterpart:
Liapunov–Schmidt reduction—is developed in this perturbation approach. Post-secondary buckling equilibrium
branches are obtained by solving the reduced low-dimensional parametric equations and their stability properties
are determined directly by checking the eigenvalues of the resulting Jacobian matrix. Typical post-secondary buckling
forms—transcritical, supercritical and subcritical bifurcations are observed according to different combinations of
boundary conditions and load types. Geometric imperfection analysis shows that not only the secondary bifurcation
load but also changes in the fundamental post-secondary buckling behavior are affected. The post-buckling dynamics
and the global analysis of mode jumping of the plates are addressed in part II.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The phenomenon that thin plates under the action of elastic stresses may demonstrate a sudden dynamic
change of their buckled modes when loaded deeply into the post-buckling regime is often called mode
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jumping. It has been proven to be of paramount importance in explaining a number of phenomena at many
different scales. Examples may be found in biophysics (e.g. membrane shape, vesicle conformation, retina
detachement (Audoly et al., 2002), mechanics (e.g. plate and isogrid panel deformation (Stein, 1959;
Muheim and Johnson, 2003), film delamination (Audoly et al., 2002; Audoly, 2002; George et al., 2002))
and materials science (e.g. thermal barrier coatings and heteroepitaxial growth of microelectronic films
(Sridhar et al., 2002, 2001)), to cite but a few.

It is a challenge to understand when such secondary instability will occur and how the buckled patterns
will change their forms from one state on the primary stable equilibrium branch to another on a remote
stable path. Initiated by Stein�s experimental observation of such transient changes in the post-buckled
deformation states in a compression test of a multi-bay, flat aluminum plate (Stein, 1959), many researches
have been dedicated to the study of mode jumping of uniaxially compressed plates (Schaeffer and Golubit-
sky, 1979; Supple, 1968; Maaskant and Roorda, 1992; Uemura and Byon, 1977; Nakamura and Uetani,
1979; Stoll, 1994; Everall and Hunt, 1999a; Everall and Hunt, 1999b; Everall and Hunt, 2000; Hunt and
Everall, 1999). A detailed review can be found in our previous paper (Chen and Virgin, 2004).

Bi-axially loaded plate models have recently been used to investigate the pattern formation and evolu-
tion of thin metal films and coatings sustaining high compressive stresses. George et al. (2002), use the en-
ergy variation method combined with the perturbation approach to study the delamination of an infinitely
large thin film; the morphological change of buckled patterns—from strait-edge blisters to periodic distri-
bution of droplets (or bumps)—has been observed. Audoly et al. (Audoly et al., 2002; Audoly, 2002), on the
other hand, investigate the secondary buckling patterns of an infinitely long polycarbonate strip by solving
the von Kármán equation using a modal analysis approach, where the configuration of the plate is assumed
to consist of three fundamental modes: the strait-side blister mode, the bump mode and the antisymmetric
droplets; various secondary buckling patterns have been predicted successfully and confirmed by their
experimental data. Although the biaxial model can reveal some important characteristics of a thermally
loaded plate, the real evolution of the nonlinear solutions of the latter cannot be analyzed accurately
and the validity of the results need be checked.

Unlike its mechanically-loaded counterpart, mode jumping of a plate under thermal loading has by com-
parison received little attention, despite its significant applications in new materials and aerospace engineer-
ing. The main difficulty comes from the intensive coupling between the flexural deformation and in-plane
boundary constraints. In this case, the external force is an implicit function of the vertical displacement, there-
fore it cannot be simply analogized by the uniformly distributed loads along edges. In Chen and Virgin (2004)
and Virgin and Chen (2003), we made an initial study of this topic by investigating a thermally loaded thin
plate with all its four edges simply supported and fixed in-plane. It was found that the plate under the action
of thermal stress will demonstrate much stronger geometric nonlinearity than its mechanical counterpart. As a
result the secondary bifurcation occurs far beyond the primary buckling point (e.g. the secondary buckling
load can be as much as 46 times that of the initial buckling temperature (Chen and Virgin, 2004)). The ana-
lytical approach for predicting mode jumping cannot succeed even qualitatively unless sufficient modal com-
ponents are taken into account. The propagation of the deformed configuration of the plate shows intricate
yet intriguing pattern changes: before the occurrence of the secondary bifurcation, symmetric �bump-like� pat-
terns are developed smoothly, but after the snapping, an asymmetric oblique bump appears. Because of the
strong nonlinearity presented, both the secondary instability and the pattern selection mechanisms of thin
plates at high stresses still complicate analysis, in spite of the recent advances in nonlinear dynamics.

In the present study (part I and II), we aim at developing an efficient method to study the secondary
instability and mode jumping of thin plates under more general load and boundary combinations. Numer-
ical approaches such as the finite element method are well suited for this purpose. As mode jumping is often
associated with the occurrence of the secondary instability, the study of the local behavior of structures near
the secondary bifurcation point is by itself very important. Although the parametric continuation method
now becomes the most versatile technique in analyzing nonlinear buckling of structures (Riks, 1984), at the
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secondary bifurcation point where the primary path loses its stability, this method will encounter branch
switching difficulties in determining the post-secondary buckling paths, especially for slender flexible struc-
tures such as plates, panels or shells. This is because slender structures often demonstrate complex unstable
post-critical behaviors, characterized by strong mode interactions due to the occurrence of simultaneous or
nearly simultaneous buckling modes. In this situation, perturbation methods are often used to investigate
the local post-buckling behaviors.

In his pioneering work Koiter developed a general theory to analyze bifurcation problems in nonlinear
elastic structures. It contains a blueprint for approaches to explore the initial post-buckling behavior of ac-
tual problems encountered in engineering practice. An excellent review can be found in Budiansky�s presen-
tation (Budiansky, 1974) and a comparison between the continuation method and the perturbation
approach is given in Riks (1984). With the arrival of finite element techniques, many attempts have been
made to reshape the method so that it can be implemented in general-purpose finite element codes. A com-
putational method to calculate Koiter�s b-factor, a measurement of the sensitivity to different kinds of
imperfections of anisotropic panels is presented in Geier (2002). In Pignataro et al. (2000), the effect of
interaction between one overall buckling mode and many local modes on the post-buckling behavior of uni-
formly compressed corrugated sheets is analyzed. Recently, Casciaro et al. (1991), Casciaro et al. (1992),
Lanzo et al. (1995), Salernor and Casciaro (1997) and Lanzo and Garcea (1996) have developed a method
which combines a modified perturbation approach with the use of a High-Continuity (HC) finite element
and used it to analyze the post-buckling behavior of 3D trusses, rectangular plates and thin-walled struc-
tures. However, their derivations are limited to the mechanical loading case, where the external load is given
explicitly. Moreover, equilibrium equations obtained by considering multi-mode interactions are simplified
to cubic and quartic forms and the attractors (stable paths) are obtained by solving the appropriate reduced
single-mode equations using minimum path theory. This is a very complicated procedure and there is some
doubt as to whether, and to what extent, the separate single-mode analysis can represent a complete multi-
mode analysis, especially for problems with stronger geometric nonlinearities.

In this paper, we will use a procedure similar to Casciaro�s to develop an asymptotical method suitable for
more general load cases. Nevertheless, the stability analysis of the post-secondary buckling branches is per-
formed by introducing a dynamical multi-mode deduction method presented in Section 3. By changing the
investigation from the static point of view (as did in most of previous researches) to that of dynamic, this
method dramatically simplifies the procedure of the determination the post-buckling stability. Because mode
jumping usually happens in the strongly nonlinear regime, in order to predict the initial post-secondary behav-
ior accurately, the effect of initial imperfection is considered directly in the finite element model rather than
approximated in the reduced equations as in many classical perturbation methods. A complete study of the
post-buckling behavior of the generalized loaded plates, including the post-buckling dynamics and the global
analysis of mode jumping of the plates, will be addressed in part II Chen and Virgin (in press) (Chen, 2004).

Here is a brief outline of this paper. In Section 2, basic static asymptotical equations based on Koiter�s
theory are derived by using the functional analysis approach. In Section 3, we introduce a multi-mode
dynamical reduction method to study the stability of the local post-secondary bifurcation solutions. The
finite element implementation of the resulting analytical equations is described in Section 4, whereas Sec-
tion 5 is devoted to numerical analyses and discussions.
2. Perturbation theory and formulations

2.1. Equilibrium equation

Formally, a generalized displacement field u for a hyperelastic structure is sought by the application of
the principle of stationary potential energy:
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dP½u; k� ¼ U0½uðkÞ�du� kW0½uðkÞ�du ¼ 0 8du 2T; ð2:1Þ

where P represents the total potential energy, U represents the strain energy of the elastic structure, W rep-
resents the work done by the unit external force (mechanical or thermal load, for example), T represents
the subspace of all admissible variations of the displacement u, the superscript ( ) 0 denotes the Frechet deriv-
ative with respect to u, and the scalar variable k represents the load parameter. Here it is also assumed that
geometric constraints or boundary conditions are independent of k.

For the mechanical loading case the unit load potential W is linearly dependent on u, i.e., W ¼ p̂u, where
p̂ denotes a unit mechanical loading pattern, while for the thermal case W can be a nonlinear function of u

because of the effect of boundary conditions.
Parameterizing both the solution u of the static equilibrium Eq. (2.1) and the load k with respect to some

path parameter, for example the arc-length s, gives u = u(s), and k = k(s). By taking the derivative of (2.1)
with respect to s, the second order equilibrium equation can be obtained as
ðU00½u� � kW00½u�Þ�udu� �kW0½u�du ¼ 0; 8du 2T; ð2:2Þ
where the superscript ð�Þ represents differentiation with respect to s.
The critical situation occurs when Eq. (2.2) becomes singular:
ðU00c � kcW
00
c Þ�vcdu ¼ 0; 8du 2T; ð2:3Þ
which gives two types of critical points (uc, kc) on the equilibrium path—the limit point and bifurcation
point, where �vc denotes the critical mode, U00c ¼ U00½uðkcÞ�, and W00c ¼ W00½uðkcÞ�.

The limit point is determined by W0c�vc 6¼ 0 and �kc ¼ 0, which gives a unique solution of (2.2): �uc ¼ �vc,
while the bifurcation point is determined by Fredholm�s orthogonality condition, given by
W0c�vc ¼ 0; �kc 6¼ 0; ð2:4Þ

and the non-unique solution �uc can be obtained as
�uc ¼ �up þ ac�vc; ð2:5Þ

where �up is a particular solution of (2.2) and ac is an arbitrary constant.

2.2. Perturbation algorithm

For a bifurcation problem, following from Koiter�s theory, when k > kc, the bifurcated equilibrium
branch can be written as the summation of the fundamental path uf[k] and a difference v[n]:
u½k; n� ¼ uf ½k� þ v½n�; k ¼ kðnÞ; ð2:6Þ

where n is a suitable parameter which measures the ‘‘amount’’ of buckling mode contained in the difference
u[k, n] � uf[k] (Budiansky, 1974). Clearly, n vanishes at the bifurcation point, i.e., n! 0 for k! kb. Note,
from now on the subscript ( )b is used to designate the evaluation of functions or variables at the bifurcation
point (ub, kb). As the fundamental path uf[k] is assumed to be already known, the bifurcation path can be
determined by using the Taylor expansion of v[n] and k[n] at the bifurcation point and solving the following
equilibrium equation:
ðU00½u½k; n�� � kW0½u½k; n��Þdu ¼ 0; 8du 2T. ð2:7Þ

Koiter�s theory provides a rigorous method to analyze the initial post-bifurcation behavior of the structure.
However, in practice, sometimes structures may present snap-through configurations, where bifurcation is
not their natural character. In this limit point situation, a reference or artificial fundamental path needs to
be constructed so that the snap-through behavior in the neighborhood of the limit point can be approxi-
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mated by performing bifurcation analysis on the modified system. In this section, a modified general-pur-
posed perturbation algorithm is developed to handle both of the above two problems.

Suppose that an equilibrium point (u0, k0) near the true critical point1 can be found on the fundamental
configuration (this can be easily achieved, since in this paper we will use the arc-length method to obtain the
fundamental path and (u0, k0) can be given as the last stable point during the calculation), the fundamental
path can be approximated by a quadratic extrapolation:
1 If t
bifurca

2 In

as sugg
manip
uf ½k� ¼ u0 þ ðk� k0Þû0 þ
1

2
ðk� k0Þ2û2

0; ð2:8Þ
where the superscript ð̂ Þ designates the differentiation with respect to k, û0 and ^̂u0 denote the tangent and the
curvature of the fundamental path at (u0, k0), respectively. By substituting uf[k] into the equilibrium Eq.
(2.1), taking the derivative with respect to k once and twice, and evaluating the resulting equations at
(u0, k0), one may obtain û0 and ^̂u0 by solving the following equations:
P000û0du�W00du ¼ 0; 8du 2T; ð2:9Þ
P000^̂u0duþP0000 û2

0du� 2W000 û0du ¼ 0; 8du 2T; ð2:10Þ
where P000 ¼ U00½u½k0�� � k0W
00½u½k0��;P0000 ¼ U000½u½k0�� � k0W

000½u½k0��; . . . The bifurcation point (ub, kb) is there-
fore determined by
P00½uf ½kb���vbdu ¼ 0. ð2:11Þ

Immediately, one gets
ûb ¼ û0 þ ðkb � k0Þ^̂u0; ^̂ub ¼ ^̂u0. ð2:12Þ

To simplify our derivation, from now on the unit load potential W[u] is assumed to be a quadratic function
of the general displacement u or its derivatives, i.e., P 0[u] = U

00
[u] � kW 0[u], P

00
[u] = U

00
[u] � kW

00
[u],

P000[u] = U000[u], P(IV)[u] = U(IV)[u], . . .
To this end, the bifurcated path is assumed to take the following form:2
u½k; n� ¼ ub þ ðk� kbÞûb þ
1

2
ðk� kbÞ2^̂ub þ n�vb þ

1

2
n2 ��wb; ð2:13Þ
where ð�Þ now represents the differentiation with respect to n; �vb and ��wb lie in two multi-orthogonal sub-
spaces V and W defined by
T ¼V�W;

V ¼ fa�vbj8a 2 Rg and W ¼ f��wbjh��wb;�vb >¼ 0; 8��wb 2Tg; ð2:14Þ
where the inner product is defined explicitly by
hu; vi ¼ ðU000b ûb �W00bÞuv; 8u; v 2T; with h�vb;�vbi ¼ ðU000b ûb �W00bÞ�v
2
b ¼ �1. ð2:15Þ
he reference path uf[k] constructed from (u0, k0) is close enough to the true equilibrium path which includes the limit point, a
tion point is guaranteed to exist on uf[k] (Casciaro et al., 1992).

fact, a more general expression

u½k; n� ¼ ub þ ðk� kbÞ^̂ub þ
1

2
ðk� kbÞ2^̂ub þ n�vb þ nðk� kbÞ �̂wb þ

1

2
n2 ��wb

ested in Casciaro et al. (1991) for mechanical loading case ðW½u� ¼ p̂uÞ could have been used. However, after some mathematical
ulations, it can be proven that the middle term �̂wb actually vanishes even for the more general W[u].
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Thus, the orthogonal condition can be expressed as
h�vb;wi ¼ ðU000b ûb �W00bÞ�vbw ¼ 0; 8w 2W. ð2:16Þ

Substituting the expressions for fundamental path (2.8) and bifurcated path (2.13) into the equilibrium Eq.
(2.1), respectively, performing the Taylor expansion at the bifurcation point, and projecting the resulting
equations onto the orthogonal subspace W, gives
P00b ��wbdwþ U000b �v2
bdw ¼ 0; 8dw 2W; ��w 2W. ð2:17Þ
Note, in the above derivation use has been made of the bifurcation condition (2.3). The method of how to
obtain the orthogonal term ��wb is left to Section 4.

The equilibrium path (with bifurcation or snap-through), determined by the nonlinear k–n relationship,
can be obtained by the application of the Liapunov–Schmidt–Koiter reduction procedure, in which the
bifurcated path u[k, n] in (2.13) is substituted into the equilibrium Eq. (2.7) and then the resulting equation
is projected in the direction of the buckling mode �vb, i.e.,
ðU0½u½k; n�� � kW0½u½k; n��Þ�vb ¼ 0. ð2:18Þ

Substituting (2.13) into (2.18) and performing the Taylor expansion at (ub, kb) gives
ðU0½uf ½k�� � kW0½uf ½k��Þ�vb þ
1

2
n2U000b �u3

b þ nðk� kbÞðU000b ûb �W00bÞ�v
2
b þ

1

2
ðk� kbÞ2n½UðIVÞ

b û2
b�v2

b þ U000b ^̂ub�v
2
b�

þ 1

2
ðk� kbÞn2½UðIVÞ

b ûb�v
3
b þ U000b ��wbûb�vb �W00b ��wb�vb� þ

1

6
n3ðUðIVÞ�v4

b þ 3U000b ��wb
��v

2

bÞ þOðn4Þ ¼ 0. ð2:19Þ
The first term in the above equation is the load residual of the bifurcation path uf[k] and generally
ðU0½uf ½k�� � kW0½uf ½k��Þ�vb 6¼ 0. It vanishes only at the starting point (u0, k0). For a bifurcation problem,
(u0, k0) may be coincident with (ub, kb). By using the Taylor expansion further on the load residual term
and taking advantage of (2.16) and (2.17), the bifurcation Eq. (2.19) can be simplified to
gðk; nÞ ¼ hlðkÞ þ A3ðk� kbÞnþ
1

2
A4n

2 þ 1

2
A5ðk� kbÞ2nþ

1

2
A6ðk� kbÞn2 þ 1

6
A7n

3 þOðn4Þ ¼ 0;

ð2:20Þ

where
hlðkÞ ¼
1

2
A1ðk� k0Þ2 þ

1

6
A2ðk� k0Þ2ðkþ 2k0 � 3kbÞ; ð2:21Þ

A1 ¼ U000b û2
b�vb � 2W00bûb�vb; A2 ¼ UðIVÞ

b û3
b�vb þ 3ðU000b ûb �W00bÞ^̂ub�vb;

A3 ¼ �1; A4 ¼ U000b �v3
b; A5 ¼ UðIVÞ

b û2
b�v

2
b þ U000b ^̂ub�v

2
b;

A6 ¼ UðIVÞ
b ûb�v3

b; A7 ¼ UðIVÞ
b �v4

b � 3P00b ��w
2

b.

ð2:22Þ
The bifurcation Eq. (2.20) can be used to study all possible behavior of the structure in the immediate
neighborhood of the critical state (ub, kb) for small k � kb and n. To study the most commonly encountered
bifurcation types in elastic structures, (2.20) can be written in a shortened form:
gðk; nÞ ¼ C0 þ C1Dkþ C2nDkþ C3n
2 þ C4n

3; ð2:23Þ

where Dk = (k � kb), and
C0 ¼
1

2
ðkb � k0Þ2A1 �

1

3
ðkb � k0Þ3A2; C1 ¼ ðkb � k0Þ A1 �

A2ðkb � k0Þ
2

� �
;

C2 ¼ �1; C3 ¼
1

2
A4; C4 ¼

1

6
A7.

ð2:24Þ
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Now we are able to resort to the criteria presented in Riks et al.�s paper (Riks et al., 1996) to determine the
following four types of bifurcation behavior:
Limit Point : C1 < 0; C3 < 0;

Asymmetric bifurcation point : C1 ¼ 0; C2 < 0; C3 6¼ 0;

Symmetric bifurcation pointðsubcriticalÞ : C1 ¼ 0; C2 < 0; C3 ¼ 0; C4 < 0;

Symmetric bifurcation pointðsupercriticalÞ : C1 ¼ 0; C2 < 0; C3 ¼ 0; C4 > 0.

ð2:25Þ
3. Multi-mode dynamic reduction

The analysis in Section 2 is based on an implicit hypothesis that the initial post-buckling behavior is
dominated by the lowest critical mode �vb determined by (2.11). However, for plates or structures composed
of slender panels, there exists a cluster of isolated close-by bifurcation points on the fundamental path. In
this situation, the buckled equilibrium paths are greatly affected by the strong interactions among the buck-
ling modes corresponding to these competitive eigenvalues. Therefore the post-secondary buckling behav-
ior, which is especially important for understanding the mode-jumping phenomenon, cannot be predicted
correctly with such a single-mode model.

Another important issue for determining the mode-jumping is to analyze the stability of the various
post-buckled equilibrium paths branching from the fundamental one. Recently, two stability analysis meth-
ods have been developed based on the minimum path theory. In Riks et al. (1996), the stability of the crit-
ical point for the discrete system is studied. Alternatively, in Salernor and Casciaro (1997) and Lanzo and
Garcea (1996), equilibrium equations obtained by considering multi-mode interactions are simplified to cu-
bic and quartic forms and the attractors (stable paths) are obtained by solving the appropriate reduced sin-
gle-mode equations. However, both the above methods are based on static analysis and, as mentioned
before, the latter approach is very complicated and there is doubt over whether the separate single-mode
analysis can represent a complete multi-mode analysis.

In this section, we will introduce a simple and effective multi-mode dynamic reduction method to study
the stability of the post-buckled branches dynamically.

The dynamic equation and all the boundary conditions for a complete system can be derived from an
application of Hamilton�s principle:
d
Z t2

t1

½K½ _u� � ðU½u� � kW½u�Þ�dt ¼ 0; ð3:1Þ

duðt1Þ ¼ duðt2Þ ¼ 0; ð3:2Þ
where K ¼ 1
2

R
Xq _u2 dX represents the kinetic energy and the overdot ð_Þ represents the derivative with respect

to the time t. Integrating the equation by parts gives
Z t2

t1

Z
X

q€u dXþ ðU0½u� � kW0½u�Þ
� �

duþ
Z

oX
Boundary conditions du

� �
dt ¼ 0; 8du 2T. ð3:3Þ
The governing equation thus takes the form of
Z
X

q€udXþ ðU0½u� � kW0½u�Þ
� �

du ¼ 0; 8du 2T. ð3:4Þ
Supposing that there exist M distinct close-by bifurcation points on the fundamental path uf[k], the bifur-
cation condition now becomes
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P00½uf ½kbi���vbidu ¼ 0; 8du 2T; i ¼ 1; 2; . . . ;M ; ð3:5Þ
where �vbi is the eigenvector corresponding to the eigenvalue kbi. The nominal bifurcation point is still
(kb, ub), which is chosen from the kbi�s and typically is the smallest eigenvalue. The above nonlinear eigen-
value problem can be solved by linearizing (3.5) at (kb, ub):
P00b�vbiduþ ðkbi � kbÞðU000b ûb �W00bÞ�vbidu ¼ 0; 8du 2T. ð3:6Þ
From (3.6), it is easy to prove that these M distinct eigenvectors are in fact orthogonal to each other with
respect to the inner product defined in (2.15) and can be normalized as
ðU000b ûb �W00bÞ�vbi�vbj ¼
0; i 6¼ j;

�1; i ¼ j and kbi P kb;

1; i ¼ j and kbi < kb.

8><>: ð3:7Þ
Consequently,
P00b�vbi�vbj ¼
0; for i 6¼ j;

jkbi � kbj; for i ¼ j.

�
ð3:8Þ
Similar to the previous static single-mode analysis, the bifurcated path is now assumed to take the fol-
lowing form:
u½k; n; t� ¼ uf ½kðtÞ� þ
XM

i¼1

niðtÞ�vbi þ
1

2

XM

i¼1

XM

j¼1

niðtÞnjðtÞ��wij; ð3:9Þ
where n = [n1, n2, . . . ,nM], �vbi 2V and ��wij 2W with two orthogonal subspaces V and W now defined as
V ¼
XM

i¼1

ai�vbij8ai 2 R

( )
and W ¼ f��wijjh��wij;�vbii ¼ 0; 8�vbi 2V; ��wij 2Tg. ð3:10Þ
The orthogonality condition in (2.16) can be rewritten as
h�vbi;wi ¼ ðU000b ûb �W00bÞ�vbiw ¼ 0; 8w 2W; i ¼ 1; 2; . . . ;M . ð3:11Þ

From (3.9), we observe that the fundamental path uf[k(t)] can only be achieved if all ni(t) = 0,

i = 1,2, . . . ,M; for any ni(t) 5 0, (3.9) designates a bifurcation path. Since the stability of the fundamental
equilibrium path is already known, we are only concerned with the dynamical stability of the bifurcated
equilibrium paths (the stationary solutions of (3.4)).

To achieve this goal, we now adopt a quasi-dynamical approach—assume that the load k is increased
quasi-statically, i.e., k(t) = k, therefore the fundamental path uf[k] in (3.9) only serves as a fixed reference
path and any small perturbation on the bifurcated paths is automatically reflected by small variations of
ni(t)�s from their equilibrium values. As a result, the dynamical stability (in Liapunov�s sense) of the bifur-
cated paths can be obtained by analyzing the dynamical equations with respect to the ni(t)�s.

By considering k(t) = k, the acceleration of u (second time derivative of u) can be obtained from (3.9) as
€u½k; nðtÞ� ¼
XM

i¼1

�vbi þ
1

2

XM

j¼1

ð��wij þ ��wjiÞnjðtÞ
 !

€niðtÞ þ
XM

i¼1

XM

j¼1

��wij
_niðtÞ _njðtÞ. ð3:12Þ
Note, the stationary solution of (3.4) is still governed by (2.7). Substituting the stationary equilibrium
path uf[k] and u[k, n] into (2.1), respectively, using Taylor expansion at (ub, kb) and projecting the resulting
equations onto the orthogonal subspace W, one gets
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XM

i¼1

ni½P00b�vbi þ ðk� kbÞðU000b ûb �W00bÞ�vbi�dwþ 1

2

XM

i¼1

XM

j¼1

ninj½P00b ��wijdwþ U000b �vbi�vbjdw� þ � � � ¼ 0. ð3:13Þ
According to (3.6), the first term in the above equation vanishes automatically. The orthogonal term ��wij

thus can be determined by solving
P00b ��wijdwþ U000b �vbi�vbjdw ¼ 0; ��wij 2W; 8dw 2W. ð3:14Þ

With ��wij being solved in the orthogonal subspace W, the reduced order dynamic equations can be ob-

tained by projecting Eq. (3.4) into the bifurcated subspace V, i.e.,
Z
X

q€u½k; nðtÞ�dX

� �
�vbl þ ðU0½u½k; nðtÞ�� � kW0½u½k; nðtÞ��Þ�vbl ¼ 0; l ¼ 1; 2; . . . ;M . ð3:15Þ
Since our goal is not to solve the dynamical Eq. (3.15) but to determine the linear stability of the bifurcated
equilibrium path, the nonlinear terms in (3.12) can be dropped which gives
XM

i¼1

intXq�vbi�vbldXð Þ€niðtÞ þ gl½k; nðtÞ� ¼ 0; l ¼ 1; 2; . . . ;M ; ð3:16Þ
where
gl½k; nðtÞ� ¼ ðU0½u½k; nðtÞ�� � kW0½u½k; nðtÞ��Þ�vbl. ð3:17Þ

Applying a Taylor expansion to (3.17) at (kb, ub) gives
gl½k; nðtÞ� ¼hlðkÞ � signðkbl � kbÞðk� kblÞnlðtÞ þ
1

2

XM

i¼1

XM

j¼1

niðtÞnjðtÞRijl

þ 1

2
ðk� kbÞ2

XM

i¼1

niðtÞSil þ
1

2
ðk� kbÞ

XM

i¼1

XM

j¼1

niðtÞnjðtÞT ijl ð3:18Þ

þ 1

6

XM

i¼1

XM

j¼1

XM

k¼1

niðtÞnjðtÞnkðtÞW ijkl þHOT; ð3:19Þ
where
hl½k� ¼ ðU0½uf ½k�� � kW0½uf ½k��Þ�vbl; l ¼ 1; 2; . . . ;M ; ð3:20Þ

Rijl ¼ U000b �vbi�vbj�vbl;

Sil ¼ UðIVÞ
b û2

b�vbi�vbl þ U000b ^̂ub�vbi�vbl;

T ijl ¼ UðIVÞ
b ûb�vbi�vbj�vbl;

W ijkl ¼ UðIVÞ
b �vbi�vbj�vbk�vbl � 3P00b ��wij

��wkl.

ð3:21Þ
Note, in the above derivation, use has been made of the following two equations:
P00b�vbi�vbl þ ðk� kbÞðU000b ûb �W00bÞ�vbi�vbl ¼
0; if l 6¼ i;

�ðk� kblÞ; if l ¼ i; and kbl P kb;

ðk� kblÞ; if l ¼ i; and kbl < kb;

8><>: ð3:22Þ

P00b�vbl
��wij ¼ 0; i; j; l ¼ 1; 2; . . . ;M . ð3:23Þ
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The physical meaning of the expression hl[k] is that it represents the projection of the residual (caused by
substituting the approximated fundamental path into the equilibrium equation) in the direction of �vbl. By
further using Taylor expansion at the nominal bifurcation point, expression hl[k] is thus given as
hl½k� ¼
1

2
ðk� k0Þ2½P00b^̂ub�vbl þ ðU000b ûb � 2W00bÞûb�vbl� þ

1

6
ðk� k0Þ2ðkþ 2k0 � 3kbÞ½UðIVÞ

b û3
b�vbl

þ 3ðU000b ûb �W00bÞ^̂ub�vbl� þHOT. ð3:24Þ
By letting n(t) = {n1(t), n2(t) . . . ,nM(t)}T and g(k, n) = {g1(k, n), g2(k, n) . . . ,gM(k, n)}T, the dynamical
Eq. (3.15) can be written in matrix form:
A€nðtÞ þ gðk; nðtÞÞ ¼ 0; ð3:25Þ

with components of A defined by Aij ¼

R
Xq�vbi�vbj dX. By further introducing finite element discretization,

the buckling mode can be expressed as �vbi ¼ Ndi, di 2 RN , where N and di are the shape function and
the nodal value of vbi, respectively. To this end, the matrix A can be rewritten in the following form:
A ¼

dT
1 Md1 dT

1 Md2 � � � dT
1 MdM

dT
2 Md1 dT

2 Md2 � � � dT
2 MdM

� � � � � � � � � � � �
dT

M Md1 dT
M Md2 � � � dT

M MdM

26664
37775 ¼ STMS; ð3:26Þ
where M = �XqNTNdX is the mass matrix of the discrete system and S = {d1, d2, . . . ,dM} can be considered
as a transformation matrix which reduces the nonlinear dynamic problem in the high-dimensional displace-
ment space to the low-dimensional parametrical space. The multi-orthogonal property of the column vec-
tors in S comes from (3.8). Since M is positive definite, it is easy to prove that the reduced mass matrix A is
also positive definite. In fact, 8nx 2 RM , nx 5 0, nT

x Anx ¼ ðSnxÞ
T
MðSnxÞ > 0. Therefore, the stability of the

equilibrium solutions of (3.25) is indeed determined only by the Jacobian of g(k, n). That is, for a specific
stationary solution (k0, n0) of (3.25), it is stable if the Jacobian matrix Dgðk; nÞjðk0;n0Þ is positive definite,
otherwise, the solution is dynamically unstable.

Eq. (3.25) not only dramatically simplifies the procedure of calculating the post-buckled equilibrium paths
and determining their stability but also provides an efficient way of approximating the lowest M natural fre-
quencies. If seeking the equilibrium and determining the stability are the only tasks, matrix A can be replaced
by an identity matrix I, which further simplifies the computation. In this paper, the reduced-order nonlinear
dynamical equation (3.25) is solved numerically with AUTO (Doedel et al., 1997), a continuation package.
4. Finite element implementation

In this section some finite element implementation considerations specifically related to the perturbation
algorithm are introduced. Since the only distinction between the mechanical and the thermal loading cases is
that for the former, the unit load potential W[u] is a quadratic implicit function of the generalized displace-
ment field u, while for the latter, W[u] is linearly proportional to the unit external load pattern p̂, i.e.,
W½u� ¼ p̂u, here we will only focus on the thermoelastical model. In fact, most formulas derived for the ther-
mal loading case also apply to the mechanical one by simply letting the thermal expansion coefficient a = 0.

4.1. Kinematical relations

In a Cartesian coordinate system (x, y, z), consider a rectangular plate with in-plane dimensions La and
Lb and constant thickness h in the presence of a uniformly distributed temperature field DT(x, y) = DT.
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The displacement field of the mid-surface of the plate can be written in a vector form with components
representing the displacements in the three coordinate directions. That is, u = u(x, y) = {u1, u2, u3}T, where
the components ui designate ‘‘the functional degrees of freedom’’. The in-plane strains �(u) = {�x, �y, �xy}T

are assumed to be governed by the von Kármán strain–displacement relations and Kirchhoff–Love�s
assumptions are used to determine the through-the-thickness distribution of the in-plane strain. This
provides
�ðuÞ ¼ �cðuÞ þ zjcðuÞ; ð4:1Þ
where �c(u) and jc(u) represent the mid-surface strains and curvatures, respectively, which can be further
defined as
�cðuÞ ¼ �lðuÞ þ 1

2
�nðu; uÞ; ð4:2Þ

jcðuÞ ¼ f�u3;xx;�u3;yy ;�2u3;xygT
; ð4:3Þ
and where subscripts denote partial differentiation with respect to the variable, for example, ( ),xy = o2( )/
oxoy. The linear and nonlinear parts of the in-place strain �c(u) are defined by the following expressions:
�lðuÞ ¼ fu1;x þ zp;xu3;x; u2;y þ zp;yu3;y ; u1;y þ u2;x þ zp;xu3;y þ zp;yu3;xg; ð4:4Þ
�nðu; vÞ ¼ fu3;xv3;x; u3;yv3;y ; u3;xv3;y þ u3;yv3;xgT

; ð4:5Þ
where zp is the out-of-plane initial imperfection of the plate in the u3 direction. It can be observed that �l( ) is
a linear operator while �n( ) is a bi-linear operator, because
�nðu; vÞ ¼ �nðv; uÞ; ð4:6Þ
�nðuþ v;wÞ ¼ �nðu;wÞ þ �nðv;wÞ. ð4:7Þ
4.2. Potential energy and its variational expressions

The total potential energy of a thermally loaded plate is
P½DT ; u� ¼ U½u� � DTW½u�

¼ 1

2

Z Z
A
�lðuÞ þ 1

2
�nðu; uÞ

� �T

C �lðuÞ þ 1

2
�nðu; uÞ

� �
dAþ 1

2

Z Z
A

jcðuÞTDjcðuÞdA

� DT
Z Z

A
�lðuÞ þ 1

2
�nðu; uÞ

� �T

h dA; ð4:8Þ
where material stiffness matrix C, flexural rigidity matrix D and in-plane unit thermal stress vector h are
defined by
C ¼ Eh
1� m2

1 m 0

m 1 0

0 0 1�m
2

264
375; D ¼ Eh3

12ð1� m2Þ

1 m 0

m 1 0

0 0 1�m
2

264
375; h ¼ Eha

1� m

1

1

0

8><>:
9>=>;; ð4:9Þ
and where E represents the elastic modulus, m represents Poison�s ratio and a represents the thermal expan-
sion coefficient.

With the strain operator defined in (4.4) and (4.5), the Frechét derivatives of �l(u), �n(u, u) and jc(u) can
be shown to be
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�l0 ðuÞq ¼ �lðqÞ; �l00 ðuÞqr ¼ 0;

jc0 ðuÞq ¼ jcðqÞ; jc00 ðuÞqr ¼ 0;

�n0 ðu; uÞq ¼ 2�nðu; qÞ; �n00 ðu; uÞqr ¼ 2�nðq; rÞ.

ð4:10Þ
To this end, the first four Frechét derivatives of the total potential energy can be obtained as
P0½u�q ¼
Z Z

A
�lðuÞ þ 1

2
�nðu; uÞ

� �T

Cð�lðqÞ þ �nðu; qÞÞdAþ
Z Z

A
jcðuÞTDjcðqÞdA� DT

�
Z Z

A
ð�lðqÞ þ �nðu; qÞÞThdA; ð4:11Þ

P00½u�qr ¼
Z Z

A
f�lðrÞTC�lðqÞ þ jcðrÞTDjcðqÞgdAþ

Z Z
A
f�lðrÞTC�nðu; qÞ þ �nðu; rÞTC�lðqÞ

þ �nðu; rÞTC�nðu; qÞgdA

þ
Z Z

A
�lðuÞ þ 1

2
�nðu; uÞ

� �T

C�nðr; qÞ � DT �nðq; rÞTh

( )
dA; ð4:12Þ

U000½u�qrs ¼
Z Z

A
ð�lðsÞ þ �nðu; sÞÞTC�nðr; qÞdAþ

Z Z
A
ð�lðrÞ þ �nðu; rÞÞTC�nðs; qÞdA

þ
Z Z

A
ð�lðqÞ þ �nðu; qÞÞTC�nðs; rÞdA; ð4:13Þ

UðIVÞqrst ¼
Z Z

A
ð�nðt; sÞTC�nðr; qÞ þ �nðt; rÞTC�nðs; qÞÞdAþ

Z Z
A
�nðs; rÞTC�nðt; qÞdA; ð4:14Þ

W00bqr ¼
Z Z

A
hT�nðq; uÞdA. ð4:15Þ
4.3. Finite element discretization

The post-secondary buckling and mode-jumping analysis of plates is accomplished numerically by
means of a High-Continuity (HC) finite element model, which was originally proposed in Aristodemo
(1985) and Daniel (1989) and was used intensively in Casciaro et al. (1992), Lanzo et al. (1995), Salernor
and Casciaro (1997) and Lanzo and Garcea (1996) to analyze the post-buckling behavior of thin-walled
structures. The main features of the HC approach are: the interpolated displacement field is C1 continuous;
accurate displacement and stress can be obtained with relatively small numbers of degree of freedom; and it
can avoid the �locking phenomenon� whereby the structure tends to behave as if it is internally constrained
and the accuracy of the solution is destroyed (Lanzo et al., 1995).

In the HC model (see Fig. 1), the displacement components (u1, u2, u3) are interpolated from the nodal
values of the nine neighboring elements based on bi-quadratic shape functions. That is
ui ¼
X3

j¼1

X3

k¼1

/jðnÞ/kðgÞdjk
ui ; or ui ¼ Ndui; i ¼ 1; 2; 3; ð4:16Þ
where djk
ui �s denote nodal values corresponding to ui, de

ui ¼ fd11
ui ; d

12
ui ; . . . ; d21

ui ; . . . ; d33
ui g

T, shape functions
/i(n)�s and its vector equivalent N are defined as
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Fig. 1. High-Continuity finite element discretization.

H. Chen, L.N. Virgin / International Journal of Solids and Structures 43 (2006) 3983–4007 3995
/1ðnÞ ¼
1

8
� n

2
þ n2

2
; /2ðnÞ ¼

3

4
� n2; /3ðnÞ ¼

1

8
þ n

2
þ n2

2
; ð4:17Þ

N ¼ fN 1;N 2; . . . ;N 9gT
; Nm ¼ /jðnÞ/kðgÞ; ð4:18Þ
where m = 3(j � 1) + k, j, k = 1,2,3.
Assuming the nodal value du in a typical element takes the form of du ¼ fdT

u1; d
T
u2; d

T
u3g

T, the displacement
field and initial imperfection in that element can be expressed as
u ¼
N

N

N

264
375du; zp ¼ Ndp3.
The linear and nonlinear strain operators defined in (4.3)–(4.5) thus have the following properties ex-
pressed in nodal values corresponding to the appropriate displacements:
jcðuÞ ¼ Bbdu; ð4:19Þ
�lðuÞ ¼ Bldu; ð4:20Þ
�nðu; vÞ ¼ BnðuÞdv ¼ BnðvÞdu; ð4:21Þ
where
Bb ¼ �
0 0 N;xx

0 0 N;yy

0 0 2N;xy

264
375; Bl ¼

N;x 0 zp;xN;x

0 N;y zp;yN;y

N;y N;x zp;xN;y þ zp;yN;x

264
375; BnðuÞ ¼

0 0 u3;xN;x

0 0 u3;yN;y

0 0 u3;xN;y þ u3;yN;x

264
375.
Another useful property relates to the vector product of the nonlinear operator �n(u, v) with a new vector
w = {wx, wy, wxy}T, where w is assumed to be given while u and v unknown. In this situation,
wT�nðu; vÞ ¼ dT
u3GT wx wxy

wxy wy

� �
Gdv3; with G ¼

N;x

N;y

� �
. ð4:22Þ
With in-plane stresses and bending curvature obtained in (4.19)–(4.21), the scalar values of the third- and
fourth-order variation terms in (4.13) and (4.14) can be calculated by summing up their contributions in
each element. The element tangent stiffness matrix KT is determined by the second order variational expres-
sion in (4.12):
P00½u�dqdr ¼ dT
drKT ddq ¼ dT

drðK0 þ KL þ KrÞddq; ð4:23Þ
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where the small displacement stiffness matrix K0, the large displacement stiffness matrix KL and the geomet-
ric stiffness matrix Kr are defined by the first, second and third integrals in (4.12), respectively. By applying
(4.19)–(4.21), the first two stiffness matrices can be obtained directly:
K0 ¼
Z Z

Ae
ðBT

l CBl þ BT
b DBbÞdA; ð4:24Þ

KL ¼
Z Z

Ae
ðBT

l CBnðuÞ þ BnðuÞTCBl þ BnðuÞTCBnðuÞÞdA. ð4:25Þ
Let the in-plane stress resultants be
T ¼ C�c � DT h; ð4:26Þ
with the help of (4.22), the geometric matrix may be obtained as
Kr ¼
0 0 0

0 0 0

0 0 Krb

264
375; with Krb ¼

Z Z
Ae

GT T x T xy

T xy T y

� �
GdA. ð4:27Þ
The linearized eigenvalue problem in (3.6) can be written in its discrete form as
KbT �vbi ¼ �ðkbi � kbÞHb�vbi; ð4:28Þ

with Hb defined by ðU000b ûb �W00bÞ�vbidu ¼ dT

duHb�vbi. Substituting this expression into (4.13), (4.15), and letting
Tln ¼ Cð�lðûbÞ þ �nðub; ûbÞÞ � h; ð4:29Þ

we have
Hb ¼ Hb1 þHb2; ð4:30Þ

where
Hb1 ¼
Z Z

Ae
BnðûbÞTCðBl þ BnðubÞÞ þ ðBl þ BnðubÞÞTCBnðûbÞ
h i

dA; ð4:31Þ

Hb2 ¼
0 0 0

0 0 0

0 0 Hbb

264
375; with Hbb ¼

Z Z
Ae

GT
T ln

x T ln
xy

T ln
xy T ln

y

" #
GdA. ð4:32Þ
In order to get the fundamental curvature ^̂ub and orthogonal term ��wij in Eqs. (2.10) and (3.14), one needs to
solve a system of linear algebraic equations with the generalized external force related to the variational
expressions ðU000b ûb � 2W00bÞûbdu or U000b �vbi�vbidw. Let the generalized external force f take the following form:
dT
dsf ¼ ðU000b q� constW00bÞrds; ð4:33Þ
with const = 0 or 2. Substituting into (4.13) and (4.15) and using the properties of the linear and nonlinear
stress operators defined in (4.19)–(4.21), one gets
f ¼ f/ � const fw; ð4:34Þ

where
f/ ¼
Z Z

Ae
½ðBl þ BnðubÞÞTC�nðr; qÞ þ BnðqÞTCð�lðrÞ þ �nðub; rÞÞ�dA

þ
Z Z

Ae
½BnðrbÞTCð�lðqÞ þ �nðub; qÞÞ�dA; ð4:35Þ
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fw ¼
Z Z

Ae
BnðrÞThdA. ð4:36Þ
Recall from (3.14), the orthogonal terms ��wij are determined by
P00b ��wijdwþ U000b �vbi�vbjdw ¼ 0; ��wij 2W; 8dw 2W.
By introducing M Lagrange multipliers bk, (k = 1,2, . . . ,M), and considering the orthogonal condition in
(3.11), the above equation defined in the orthogonal subspace W can be transferred to a constrained equa-
tion defined in the whole admissible subspace T:
P00b ��wijduþ
PM
k¼1

bkðU000b ûb �W00bÞ�vbkdu ¼ �U000b �vbi�vbjdu; 8du 2T;

ðU000b ûb �W00bÞ�vbk
��wij ¼ 0; k ¼ 1; 2; . . . ;M .

8><>: ð4:37Þ
Letting du ¼ �vbk and noticing (3.7) and (3.23), we obtain
bk ¼
U000b �vbi�vbj�vbk if kbk P kb;

�U000b �vbi�vbj�vbk if kbk < kb.

(
ð4:38Þ
By using the following discretization procedure:
duTKb
��wij ¼ P00b ��wijdu; duTfwij ¼ U000b �vbi�vbjdu; duTf0k ¼ ðU000b ûb �W00bÞ�vbkdu; ð4:39Þ
��wij can be solved from
Kb
��wij ¼ �fwij �

XM

i¼1

bkf0k. ð4:40Þ
5. Results and discussion

5.1. Plate models and buckling loads

The methods outlined are used to analyze the mode jumping phenomenon of isotropic aluminum rect-
angular plates subjected to mechanical and thermal loads. Three plate models and their corresponding
boundary conditions are depicted in Fig. 2.

In case MeCS, Fig. 2(b), the plate is subjected to the uniformly distributed compressive load kbP with k
the load parameter, while in cases ThermSS and ThermCC, Figs. 2(c) and (d), uniformly distributed tem-
perature increase DT is applied. Geometries and material properties for these three models are listed in
Table 1.

For the purpose of comparison with previous research results, different geometries and material proper-
ties are selected for the mechanical and the thermal cases. It is worth noting that only practically realistic
imperfection amplitudes of the plates are adopted in Table 1 according to the experimental data. For exam-
ple, the maximum out-of-plane displacement of a uniaxially compressed plate is measured as 15% of the
thickness in Murphy and Virgin (1997) (in fact, initial imperfection of the MeCS plate was selected such
that W0 = 0.1h(v1b + v2b + v3b) in Riks et al. (1996)), whereas the experimental measurement of the
ThermSS and ThermCC plates in Table 1 shows an initial center deflection of 30% of the plate thickness
(not published). To show the mode component of the geometric imperfection, the lowest two linear buck-
ling loads (k1b and k2b) and the corresponding buckling modes (v1b and v2b) for each of three plate models
are provided in Fig. 3.
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Fig. 2. Plate models and boundary conditions: (a) schematic diagram; (b) case MeCS, shorter edges clamped, longer edges simply
supported and in-plane fixed; (c) case ThermSS, four edges simply supported and in-plane fixed; (d) case ThermCC, four edges clamped
and in-plane fixed.

Table 1
Geometric dimensions and material properties

Parameter Mechanical loading MeCS Thermal loading ThermSS and ThermCC

Length La (mm) 644.14 762.00
Width Lb (mm) 119.63 282.22
Thickness h (mm) 1.829 1.984
Aspect ratio r = La/Lb 5.38 2.70
Young�s modulus E (GPa) 70 70
Poison�s ratio m 0.3 0.33
Therm-expansion coefficient a (1/�C) 23 · 10�6 23 · 10�6

Mass density q (kg/m3) 2.790 · 103 2.714 · 103

Imperfection amplitudea A0 (mm) 10%h 30%h

a For case MeCS, the initial imperfection has the form W0 = A0(v1b + v2b), while for cases ThermSS and ThermCC the form of
W0 = A0v1b is used, where v1b and v2b denote the first and the second linear buckling modes of the corresponding perfect plate,
respectively. v1b and v2b are normalized such that kvibk1 = 1, i = 1,2, where kvibk1 = max{vib Æ ek}, k = 1,2, . . .
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In a finite element analysis, it is desired to have convergence tests to estimate the order of mesh size nec-
essary for the numerical solution. For this purpose, the primary and the secondary buckling load of the
three plate models shown in Fig. 2 are analyzed with different mesh sizes and results are compared with
other methods, see Table 2. As the convergence study shows mesh sizes 40 · 9 and 40 · 12 are sufficient
for the mechanical loading and thermal loading cases, respectively, the subsequent analysis is carried out
with these mesh sizes. Note that in Table 2 case MeCSfree represents the boundary conditions for Stein�s
experiment of a uniaxially loaded plate. Case MeCSfree, which has been studied intensively in previous
publications (Audoly et al., 2002; Stoll, 1994; Riks et al., 1996; Stoll and Olson, 1997; Marcinowski,
1999), has the same geometry and material properties as those of MeCS except that the two longer edges
can now move freely in the Y direction but are constrained to remain straight. From a computational point
of view, multiple point constraint equations are needed to simulate the MeCSfree plate, thus more pro-
gramming efforts are involved for the MeCSfree plate than those for the MeCS one. Since our aim is to
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introduce a new method to analyze the post-secondary bifurcation, for computational simplicity, the MeCS
model is chosen in the present study instead of the MeCSfree one.

For a uniaxially compressed plate, the stronger the in-plane boundary constraint, the lower both the first
and secondary buckling loads, with the ratio Nb2/Nb1 changing slightly (from 1.84 to 1.75). Nb1 and Nb2 for
MeCS are 25% and 29% lower than those for MeCSfree, respectively. However, for thermally loaded plates,
when the out-of-plane constraint becomes stiffer, the first buckling load increases while the secondary one
decreases. When compared with its mechanical counterpart, the secondary bifurcation point of the ther-
mally loaded plate occurs much further beyond its primary buckling point, with DTb2/DTb1 being 9.90
in ThermCC and 44.15 in ThermSS. This may be attributed to the strong geometric effect caused by the



Table 2
Convergence test and comparison of the first and second buckling loads of three plate models

Cases Buckling loads,
1sta and 2ndb

Present HC-element Analytic in Chen
and Virgin (2004)

ANSYS (Shell93)

35 · 7 40 · 9 60 · 15 60 · 10

MeCS Nb1 (N/mm) 78.223 77.937 77.643 – 77.392
Nb2 (N/mm) 136.82 136.19 135.11 – 133.52
Nb2/Nb1 1.749 1.747 1.740 – 1.725

30 · 10 40 · 12 50 · 15 40 · 16

ThermSS DTb1 (�C) 1.521 1.518 1.516 1.512 1.511
DTb2 (�C) 67.44 67.04 66.73 69.31 66.36
DTb2/DTb1 44.33 44.15 44.02 45.83 43.92

ThermCC DTb1 (�C) 5.326 5.279 5.241 – 5.169
DTb2 (�C) 51.85 52.29 51.58 – 50.55
DTb2/DTb1 9.74 9.90 9.84 – 9.78

Stein�s experimental datac

MeCSfree Nb1 (N/mm)4 Nb2 (N/mm) Nb2/Nb1

103.48 191.06 1.84

a The first buckling load is obtained from the corresponding perfect plate.
b The second buckling load is the primary buckling load obtained in the fully geometrically nonlinear analysis of the imperfect plate.
c Converted from Stoll and Olson (1997).
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boundary constraints (both in-plane and out-of-plane). Because of the intensive coupling between the exter-
nal load and the displacement field, the thermally buckled plate demonstrates a stronger geometric nonlin-
earity than the mechanically loaded case. Therefore, the analysis of the mode jumping of the former cannot
be handled easily by using the equivalent bi-axially compressed mechanical model with simple linear rela-
tions between the longitudinal and transverse edge forces.

5.2. Post-secondary bifurcation behavior

Initial post-bifurcation behavior i.e., immediately after the instability is studied by using the perturba-
tion method. The bifurcation coefficients used for the determination of the secondary bifurcation types
are obtained by using a single-mode analysis approach and results are listed in Table 3. Three typical bifur-
cation types—asymmetric, subcritical and supercritical, are found for plates with different combinations of
load types and boundary conditions. The initial post-secondary bifurcated paths and their stability are ana-
lyzed using a multi-mode dynamic reduction method. Fig. 4 provides bifurcation diagrams for three plate
models. Note that in this figure the load increment is measured from the secondary bifurcation point. It
is observed from Fig. 4(a) that for the asymmetric bifurcation case, MeCS, the stable bifurcated path
quickly loses its stability beyond the secondary bifurcation point, with Nx � Nb2 � 0.017.5 (N/mm) or
DNx/Nb1 � 2.45 · 10�4. Therefore, strictly speaking the mode jumping occurs slightly beyond the second-
ary bifurcation point. It is interesting to note that for the same plate with smaller initial imperfection, say,
A0 = 3%h, the bifurcation type is still asymmetric but the stable bifurcated path will never lose its stability.
This means that the post-secondary bifurcation behavior of the plate is sensitive to the amplitude of the
initial imperfection. This aspect will be revisited later.

Subcritical and supercritical post-secondary bifurcation behavior for thermally loaded plates are con-
firmed by the multi-mode reduction method, see Figs. 4(b) and (c). For case ThermSS, demonstrating sub-



Table 3
Bifurcation coefficients for three plate models

Cases Bifurcation coefficients Bifurcation types

C1 C2 C3 C4

MeCS 3.035 · 10�5 �1 �3.2307 · 103 3.1342 · 105 Asymmetric
ThermSS 0 �1 �4.060 · 10�10 �1.381 · 103 Subcritical
ThermCC 0 �1 �6.323 · 10�11 47.552 Supercritical
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critical bifurcation, all local post-secondary bifurcated branches are unstable. The mode jumping phenom-
enon is qualitatively captured for ThermCC, the supercritical one. A clearer picture of the post-secondary
bifurcation and mode jumping is revealed by the load vs. displacement relations in Fig. 5. For comparison
purposes, results for ThermSS are obtained by the analytic method developed in our previous paper (Chen
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and Virgin, 2004) to overcome the limitations of the local perturbation approach. For the asymptotic bifur-
cation case, MeCS, because the stable post-secondary buckling branch loses its stability immediately after
the secondary point (DNx/Nb1 = 2.45 · 10�4) and the local perturbation analysis cannot capture the remote
stable branch to which the plate may jump, no corresponding load vs. displacement plot is provided in Fig.
5. Fig. 5(a) exhibits a complicated post-secondary bifurcation behavior for the thermally loaded simply sup-
ported plate. Near the secondary buckling load DTb2 = 69.31 �C, the bifurcation is subcritical but the
unstable bifurcated paths are blocked by further bifurcation points; as a result, three unstable bifurcation
paths are needed to connect the fundamental path and the remote stable target branch, demonstrating the
existence of strong nonlinearity. In Fig. 5(b) the multi-mode perturbation analysis provides qualitatively
the post-secondary buckling behavior of a four edges clamped plate, ThermCC. At DTb2 = 52.29 �C or
DTb2/DTb1 = 9.90, two stable branches bifurcate from the secondary bifurcation point. Slightly above
the bifurcated point, at DT = 53 �C, another pair of branches emanates from the fundamental path and
are initially unstable. More stable branches appear as the temperature reaches at 72 �C. Mode-jumping
is observed at DT = 78 �C, where the first pair of stable branches lose their stability and the plate will �jump�
to a remote state on one of the still stable branches. In this supercritical bifurcation case, the perturbation
method can also serve as a branch-switching technique for the more accurate arc-length method—with
small load increment, the displacement predicted by the former can be used as the starting point for the
latter. An obvious advantage for the perturbation branch-switch is that one can control the switching pro-
cedure by selecting only stable branches. In fact, the arc-length results in Fig. 5(b) are obtained this way.
When compared to arc-length, the perturbation results show good agreement up to 8 �C above the second-
ary bifurcation point.

Close scrutiny of Fig. 5 also reveals an interesting phenomenon: for the thermally loaded plate, after the
passing of the secondary bifurcation point, stable equilibrium paths appear in pairs and each pair seems to
demonstrate some kind of symmetric with respect to the fundamental path. As we will show in part II, this
kind of symmetric actually reflects the fact that moving along a pair of stable paths (supercritical pair for
ThermCC or the remote target one for ThermSS), the frequencies of the plate at the two corresponding
points on that pair are identical.

Asymptotic analysis in this subsection shows that different combinations of boundary conditions and
load types may result in different post-secondary bifurcation forms. At the secondary bifurcation point,
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if the bifurcation type is determined as subcritical (meaning that all the local post-secondary paths are
unstable) mode jumping happens immediately and a dramatic change of the post-buckled deformation
shape can be observed. On the other hand, if an asymmetric or supercritical bifurcation type is determined,
the transition of the post-buckled pattern is smooth and mode jumping may be deferred until a tertiary or
higher order bifurcation points. The above results are consistent with a series of experimental observations
of uniaxially compressed plates or panels. In Stein�s experiment, a violent dynamic snap was observed when
the configuration of an aluminum plate (with unloaded edges free to move in-plane but remaining straight)
encountered a secondary instability (Stein, 1959; Stoll and Olson, 1997), while no dramatic changes of the
post-buckled patterns were observed when a stiffened graphite panel (with free unloaded edges) was
compressed to pass its secondary buckling load (Knight and Starnes, 1988). The final example relates to
a four-edge integrated hat-stiffened composite panel under uniaxially compression. It experienced smooth
propagation of post-buckled patterns until the tertiary bifurcation point was reached, where the panel
exhibited a dramatic change in buckling mode shape (Falzon and Steven, 1997).

5.3. Effects of initial imperfections

Previous sections focused on the investigation of the secondary instability and mode jumping of rectan-
gular plates under different combinations of load type and boundary conditions. The plate models are as-
sumed to have some geometrical imperfection with reasonable imperfection amplitudes. This is a commonly
used technique to study secondary instability and mode jumping phenomenon (Muheim and Johnson,
2003; Stoll, 1994; Riks et al., 1996; Stoll and Olson, 1997) and buckling in general (Murphy and Virgin,
1997). In this section, we will study the effects of the imperfection shape and the imperfection amplitude
on the secondary buckling load and the initial post-secondary bifurcation behavior of the three plate mod-
els. Specifically, the initial imperfection of the plate takes one of the following two forms: w0 = A0v1b and
w0 = A0(v1b + v2b), where A0 denotes the imperfection amplitude, v1b and v2b denote the first and the second
linear buckling modes for the perfect plate. As indicated in Table 1, the maximum components of the two
vectors v1b and v2b are normalized to be 1. For the mechanically-loaded plate, MeCS, v1b and v2b take the
forms of the (3,1) mode and the (4,1) mode, respectively, while for the thermally-loaded ones, ThermSS and
ThermCC, the (1,1) mode and the (2,1) mode are used for v1b and v2b, respectively, see Fig. 3.
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From Fig. 6, it can be observed that for the single-mode imperfection case the secondary bifurcation
loads for three of the plate models increase monotonically with respect to the imperfection amplitude
A0, with relatively small changes of their values between A0/h = 0 and A0/h = 0.4. However, if the geomet-
rical imperfection consists of two modes, the secondary bifurcation load vs. the imperfection amplitude
curve may exhibit a large jump at a certain value of A0. For MeCS, Nb2/Nb1 jumps from 1.20 at
A0 = 0.01 to 1.64 at A0/h = 0.02. Before and after this jump, Nb2/Nb1 changes smoothly with respect to
A0. For ThermSS, the jump occurs around A0/h = 0.19. When A0/h < 0.19, the secondary buckling load
Tb2 takes the value of 67 �C and is not sensitive to the imperfection amplitude. When A0/h is slightly larger
then 0.19, Tb2 drops dramatically to 38 �C then increases slightly and smoothly as A0 increases. The only
exception is the case ThermCC, for which Tb2 changes slightly and smoothly as A0/h increases from 0 to 0.4.

To this end, we will study the effect of initial imperfection on the post-secondary bifurcation behaviors of
the three plate models. The post-secondary bifurcation type is determined by (2.25), using the coefficients
Fig. 7. The effect of initial imperfections on bifurcation coefficients: (a) coefficient C3 for MeCS, initial imperfection consisting of one
mode or two modes; (b) coefficient C4 for three plate models, initial imperfection consisting of one mode; (c) coefficient C4 for three
plate models, initial imperfection consisting of two modes.
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C1, C2, C3 and C4. Recall that in our algorithm the buckling mode is normalized to make C2 = �1; C1 is
very small for MeCS and zero for ThermSS and ThermCC, as indicated in Table 3. Thus, only the coeffi-
cients C3 and C4 are presented in Fig. 7. In Fig. 7(a), coefficient C3 for MeCS exhibits large values for both
the single-mode and the two-mode geometrical imperfections. According to the criteria in (2.25), the post-
secondary behavior for the uniaxially loaded plate is always asymmetric. Since in the range of A0/h = 0–0.4
the coefficient C3 for the thermally loaded plates (ThermSS and ThermCC) takes extremely small values (to
the order of 10�7 and 10�8, respectively), they are ignored in the determination of the bifurcation type. The
thermally-loaded clamped plate, ThermCC, always exhibits the supercritical type of post-secondary bifur-
cation, because C4 is always positive for both the single-mode and the two mode imperfection case. The
most interesting phenomenon happens for the simply supported plate, ThermSS. Although it always dem-
onstrates the subcritical post-secondary bifurcation if the imperfection consists of only one mode, for the
two mode imperfection case the bifurcation type changes from the subcritical to supercritical as A0/h in-
creases above 0.19, consistent with the abrupt change of the secondary buckling load in Fig. 6(a).

The above analysis shows that both the secondary buckling load and the post-secondary bifurcation type
are sensitive to initial imperfections. Thus, to improve the result for a real plate, more accurate imperfection
shapes can be obtained by using a Fourier expansion of the measured surface geometries.
6. Concluding remarks

As the first stage of the systematic investigation of nonlinear post-buckling behavior (including post-
buckling dynamic and mode jumping) of generalized loaded plates, an asymptotical finite element method
which combines Koiter�s nonlinear perturbation theory with the finite element technique is developed to
study the local post-secondary bifurcation. With the utilization of a High-Continuity finite element discret-
ization, bifurcation coefficients, which can be used to determined the post-secondary bifurcation type of the
plates, are obtained by evaluating the high-order variations of the potential energy functions. A dynamical
multi-mode dynamic reduction method—similar to its static single-mode counterpart: Liapunov–Schmidt
reduction—is introduced. By this, the post-secondary buckling branches are obtained by solving the re-
duced low-dimensional parametric equations and their stability is determined directly by checking the
eigenvalues of the resulting Jacobian matrix. By transferring the stability problem concerning the post-
secondary bifurcated branches to that of the condensed modal parameters (n), this multi-mode dynamic
reduction method dramatically simplifies the procedure of finding stable post-buckling paths, which is nor-
mally very complicated for many pure static approaches including the minimum potential energy method.

Different combinations of load types and boundary conditions may result in different post-secondary
bifurcation form (e.g. asymmetric, supercritical and subcritical bifurcations), and consequently affect the
evolution of the post-secondary buckling patterns. At the secondary bifurcation point, if the bifurcation
type is determined as subcritical, mode jumping happens immediately and a dramatic change of the
post-buckled deformation shape can be observed. On the other hand, if an asymmetric or supercritical
bifurcation type is determined, the transition of the post-buckled pattern is smooth and mode jumping
may happen later (or not at all).

Geometric imperfections are found not only to affect the secondary bifurcation load but also even to
change the post-secondary bifurcation type. Because of the sensitivity of initial imperfection, it is usually
preferred to perform the local post-secondary analysis before an fully dynamic investigation of the mode
jumping phenomenon.

It is worth mentioning that by adopting different element types, the asymptotic finite element method
developed here is applicable to analyzing more general hyperelastic problems, such as the secondary or
higher order instability and mode jumping of shells. This is possible because there is no particular limitation
in the development of the multi-mode dynamic reduction method.
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George, M., Coupeau, C., Colin, J., Cleymand, F., Grilhé, J., 2002. Delamation of metal thin films on polymer substrates: from
straight-side blisters to varicose structures. Philosophical Magazine A 82, 633–641.

Hunt, G.W., Everall, P.R., 1999. Arnold tongues and mode-jumping in the supercritical post-buckling of an archetypal elastic
structure. Proceedings of the Royal Society of London, Series A 455, 125–140.

Knight, N.F., Starnes Jr., J.H., 1988. Postbuckling behavior of selected curved stiffened graphite-epoxy panels loaded in axial
compression. AIAA Journal 26, 344–352.

Lanzo, A.D., Garcea, G., 1996. Koiter�s analysis of thin-walled structures by a finite element approach. International Journal for
Numerical Methods in Engineering 39, 3007–3031.

Lanzo, A.D., Garcea, G., Casciaro, R., 1995. Asymptotic post-buckling analysis of rectangular plates by HC finite elements.
International Journal for Numerical Methods in Engineering 38, 2325–2345.

Maaskant, R., Roorda, J., 1992. Mode jumping in biaxially compressed plates. International Journal of Solids and Structures 29,
1209–1219.

Marcinowski, J., 1999. Postbuckling behaviour of rectangular plates in axial compression. Archives of Civil Engineering 45, 275–288.
Muheim, D.M., Johnson, E.R., 2003. Mode jumping of an isogrid panel under quasi-static compression. In: Proceedings of the 44th

AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference, AIAA-2003-1790, Norfolk, VA, April, vol.
5, pp. 3591–3601.



H. Chen, L.N. Virgin / International Journal of Solids and Structures 43 (2006) 3983–4007 4007
Murphy, K.D., Virgin, L.N., 1997. The effect of thermal prestress on the free vibration characteristics of clamped rectangular plates:
theory and experiment. Journal of Vibration and Acoustics 119, 243–249.

Nakamura, T., Uetani, K., 1979. The secondary buckling and post-buckling behaviors of rectangular plates. International Journal of
Mechanical Science 21, 265–286.

Pignataro, M., Pasca, M., Franchin, P., 2000. Post-buckling analysis of corrugated panels in the presence of multiple interacting
modes. Thin-Walled Structures 36 (47–66).

Riks, E., 1984. Some computational aspects of the stability analysis of nonlinear structures. Computer Methods in Applied Mechanics
and Engineering 47, 219–259.

Riks, E., Rankin, C.C., Brogan, F.A., 1996. On the solution of mode jumping phenomena in thin-walled shell structures. Computer
Methods in Applied Mechanics and Engineering 136, 59–92.

Salernor, G., Casciaro, R., 1997. Mode jumping and attractive paths in multimode elastic buckling. International Journal for
Numerical Methods in Engineering 40, 833–861.

Schaeffer, D.G., Golubitsky, M., 1979. Boundary conditions and mode jumping in the buckling of rectangular plates. Communications
in Mathematical Physics 69, 209–236.

Sridhar, N., Srolovitz, D.J., Suo, Z., 2001. Kinetics of buckling of compressed film on a viscous substrate. Applied Physics letters 78,
2482, 2484.

Sridhar, N., Srolovitz, D.J., Cox, B.N., 2002. Buckling and post-buckling kinetics of compressed thin films on viscous substrates. Acta
Materialia 50, 2547–2557.

Stein, M., 1959. Loads and deformation of buckled rectangular plates. NASA Technical Report R–40, National Aeronautics and
Space Administration, 1959.

Stoll, F., 1994. Analysis of the snap phenomenon in buckled plates. International Journal of Non-Linear Mechanics 29, 123–138.
Stoll, F., Olson, S.E., 1997. Finite element investigation of the snap phenomenon in buckled plates. In: Proceedings of the 1997 38th

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, vol. 4, pp. 2703–2712.
Supple, W.J., 1968. On the change in buckle pattern in elastic structures. International Journal of Mechanical Sciences 10, 737–745.
Uemura, M., Byon, O., 1977. Secondary buckling of a flat plate under uniaxial compression—Part 1: Theoretical analysis of simply

supported flat plate. International Journal of Non-Linear Mechanics 12, 355–370.
Virgin, L.N., Chen, H., 2003. The dynamics of mode jumping in thermally buckled plates. In: The 8th International Conference on

Recent Advances in Structural Dynamics, Southampton, UK, July 2003.


	Finite element analysis of post-buckling dynamics in plates mdash Part I: An asymptotic approach
	Introduction
	Perturbation theory and formulations
	Equilibrium equation
	Perturbation algorithm

	Multi-mode dynamic reduction
	Finite element implementation
	Kinematical relations
	Potential energy and its variational expressions
	Finite element discretization

	Results and discussion
	Plate models and buckling loads
	Post-secondary bifurcation behavior
	Effects of initial imperfections

	Concluding remarks
	Acknowledgement
	References


